ufisieat

Yeast-based magnetic bionanocomposite for the removal of Zn(II) in aqueous medium

Julia C. José¹, Thais E. Abilio¹, Beatriz C. Soares¹, Geórgia Labuto², <u>Elma N.V.M. Carrilho^{1,3}</u>

 ¹ Laboratory of Polymeric Materials and Biosorbents, Federal University of São Carlos, Brazil.
 ² Department of Chemistry, Federal University of São Paulo, Brazil.
 ³ Department of Natural Sciences, Mathematic and Education, Federal University of São Carlos, Brazil.

Bioremediation and Bioeconomy

An important field!!!

Bioremediation and Bioeconomy

2016, Pages 569-588

Chapter 22 - Bioremediation in Brazil: Scope and Challenges to Boost Up the Bioeconomy

G. Labuto ¹, E.N.V.M. Carrilho ²

Show more

Biosorption by yeast-based material

CHEMICAL ENGINEERING COMMUNICATIONS https://doi.org/10.1080/00986445.2019.1615468

Synthesis, characterization, and application of yeast-based magnetic bionanocomposite for the removal of Cu(II) from water

Contents lists available at ScienceDirect

Journal of Environmental Management

journal homepage: www.elsevier.com/locate/jenvman

Research article

A comparison study of cleanup techniques for oil spill treatment using magnetic nanomaterials

D.S. Cardona^a, K.B. Debs^a, S.G. Lemos^b, G. Vitale^c, N.N. Nassar^c, E.N.V.M. Carrilho^d, D. Semensatto^e, G. Labuto^{a,*}

^a Departamento de Química, Universidade Federal de São Paulo, Prof. Artur Riedel, 275 – Eldorado, CEP: 09972-270, Diadema, SP, Brazil

^b Departamento de Química, Universidade Federal da Paraíba, 58051-970, João Pessoa, PB, Brazil

^c Department of Chemical and Petroleum Engineering, University of Calgary, 2500, University Drive NW, Calgary, Alberta, Canada

^d Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Rodovia Anhanguera, Km 174 – SP-330, CEP 13600-970, Araras, SP, Brazil

e Departamento de Ciências Ambientais, Universidade Federal de São Paulo, Rua Prof. Artur Riedel, 275, Eldorado, CEP: 09972-270, Diadema, SP, Brazil

Check for updates

Envir

U.S. judge rules it lead and zinc sme contaminating tra

Gorst Creek and Sinclair Inlet are across the Seattle Times, 2012)

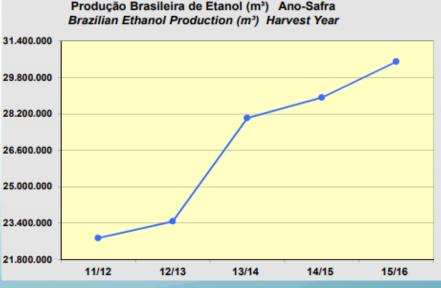
Photo: Matthew Brown / Associated Press 2018

The quality of water resources

Biosorption

Adsorption using biological waste – Biomass

Yeast biomass


 Rich in sorption sites (carboxylic, phosphates, hydroxyls groups) for accumulation of contaminants;

 Widely used in fermentative process.

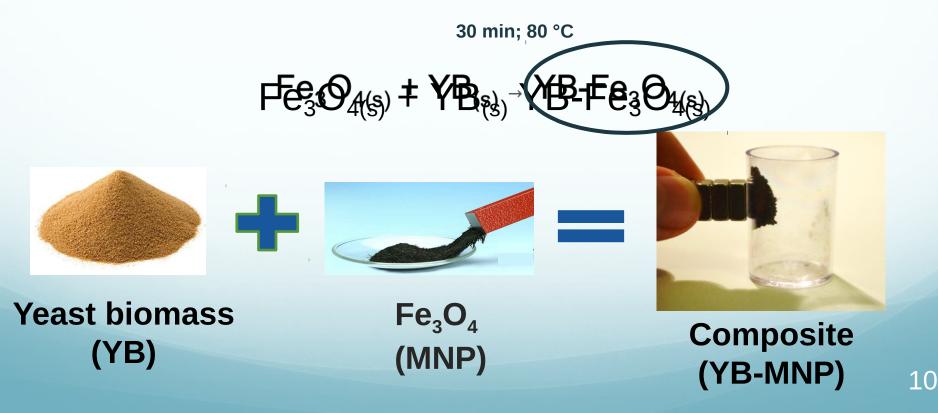
Source: Brazil, MAPA, 2017.

Ferromagnetic Nanoparticles (Fe₃O₄)

- Superparamagnetics properties:
 - Smaller size;
 - Greater interaction;
- Magnetized particles throughout the struture with the same intensity.
- It can improve the adsorption capacity of biomass (hydroxyls groups);
- It facilitates the removal from the medium.

Goals

This work proposes to:


 synthesize, characterize, and evaluate a nanomodified yeast biosorbent for the sorption of Zn(II) in aqueous environments;

to compare *in natura* biomass and synthesized magnetite composite to investigate the effect of magnetization in the efficiency of sorption.

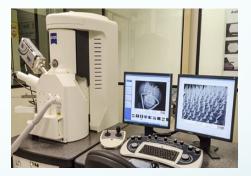
$$\mathsf{F} \overset{30 \text{ min}}{\mathsf{F}} \overset{\mathsf{2}}{\mathsf{F}} \overset{\mathsf{2}}{\mathsf{F}} \overset{\mathsf{3}}{\mathsf{F}} \overset{\mathsf{3}}{\mathsf{3}} \overset{\mathsf{3}}{\mathsf{F}} \overset{\mathsf$$

Impregnation of nanoparticles to yeast biomass Impregnation of nanoparticles to yeast biomass

Characterization of adsorbents

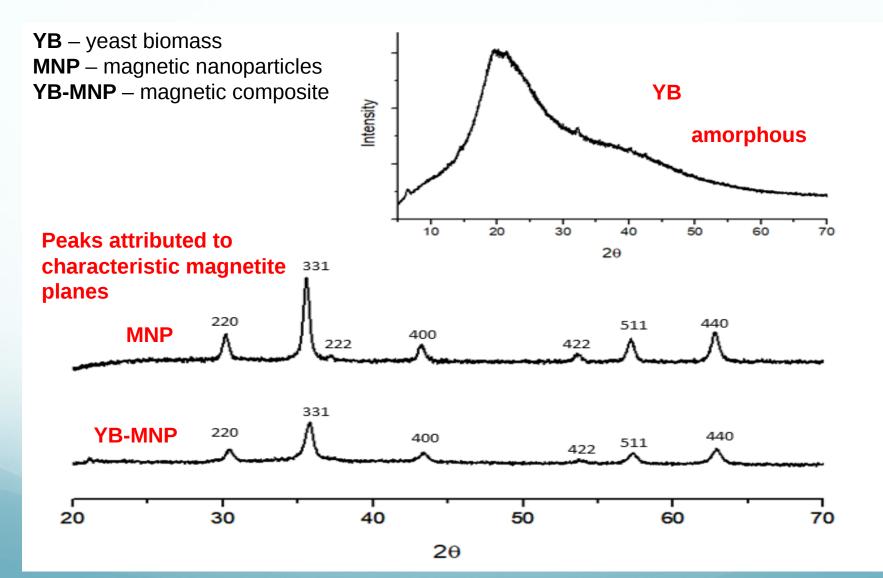
X-Ray Diffraction (XRD)

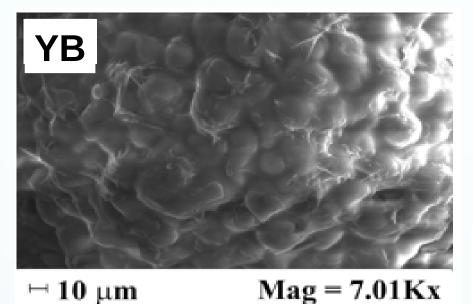
Identification of crystalline structures of the materials;

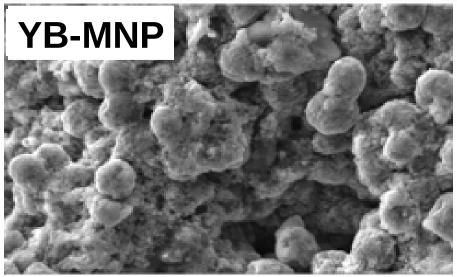

Scanning Electron Microscopy (SEM)

It is possible to obtain external images showing the surface of the materials;

Fourier Transform Infrared Spectroscopy (FTIR)


Detects the absorption in a characteristic region, identifying the functional groups in the materials.

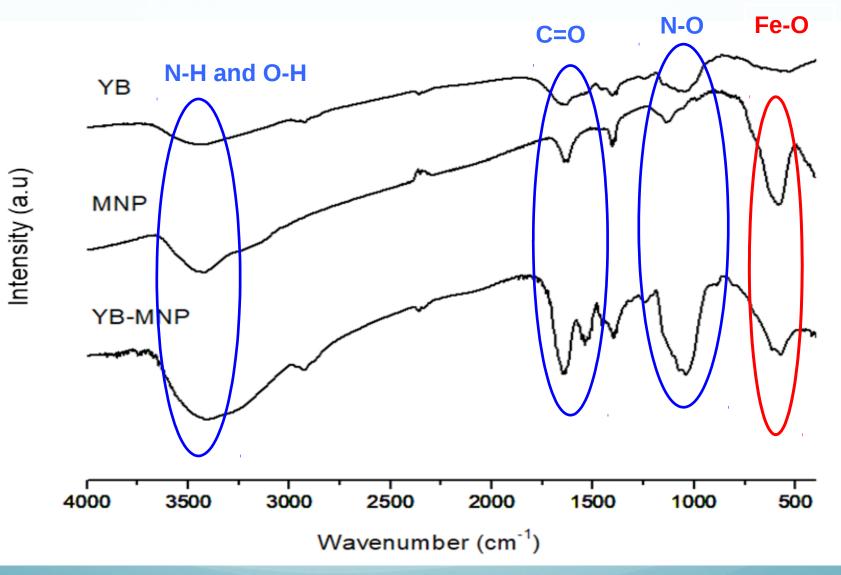



X-Ray Diffraction (XRD)

Scanning Electron Microscopy (SEM)

YB – yeast biomass
MNP – magnetic nanoparticles
YB-MNP – magnetic composite

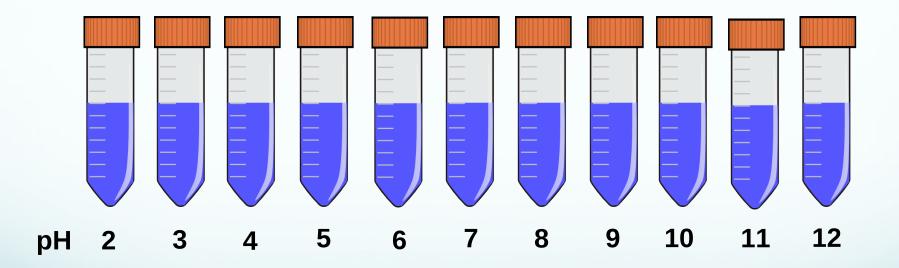
⊢ 10 µm


Mag = 7.08Kx

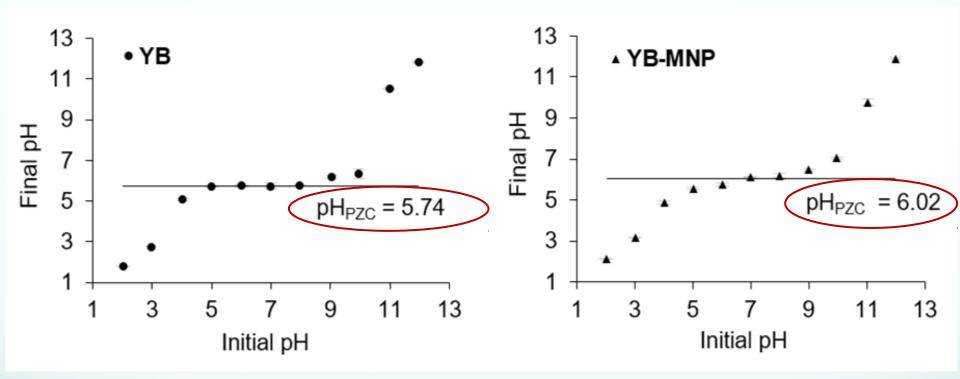
Source: Debs et al., 2019.

 \mapsto 10 μ m Mag = 7.03Kx

MNP

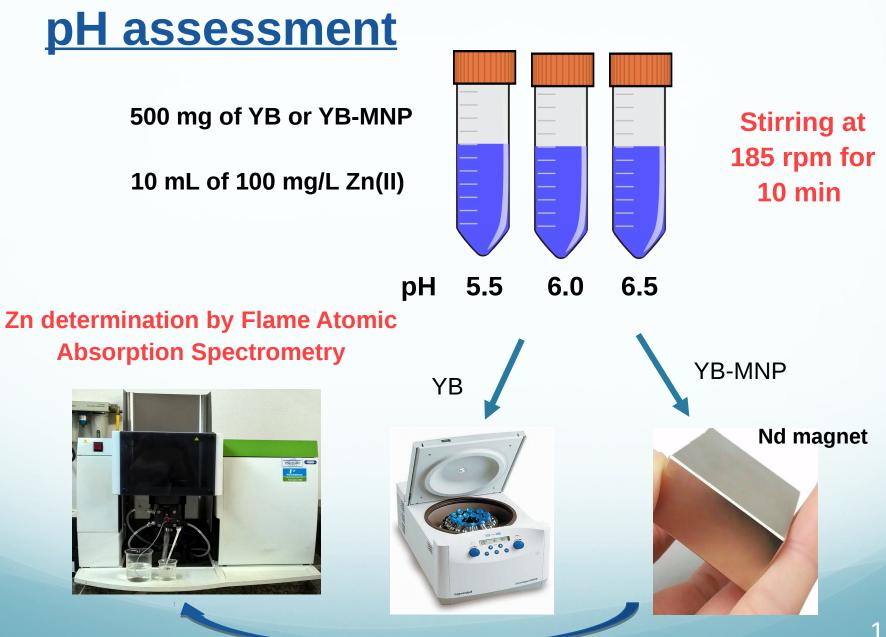

Fourier Transform Infrared Spectroscopy (FTIR)

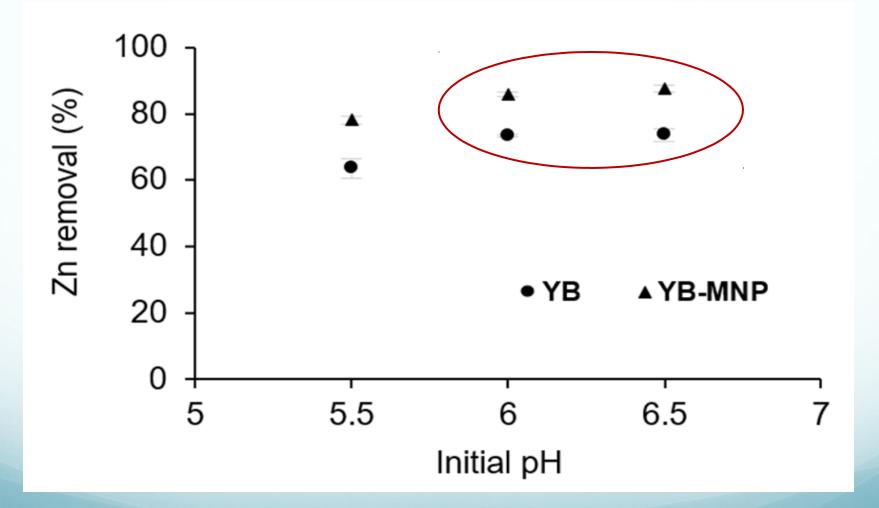
Point of zero charge (pH_{PZC})

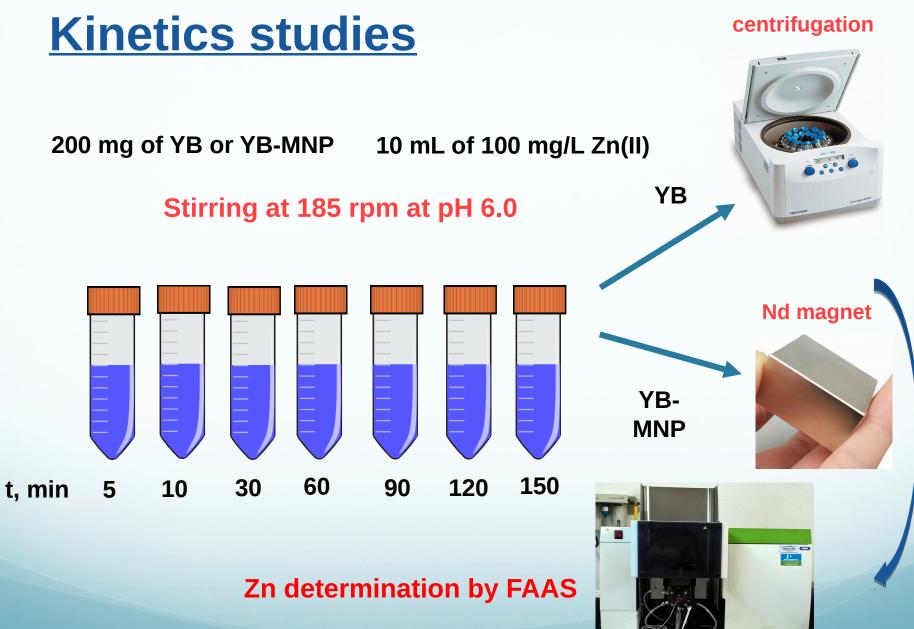

10 mg of YB or YB-MNP + 10 mL of NaCl 0.1 mol/L

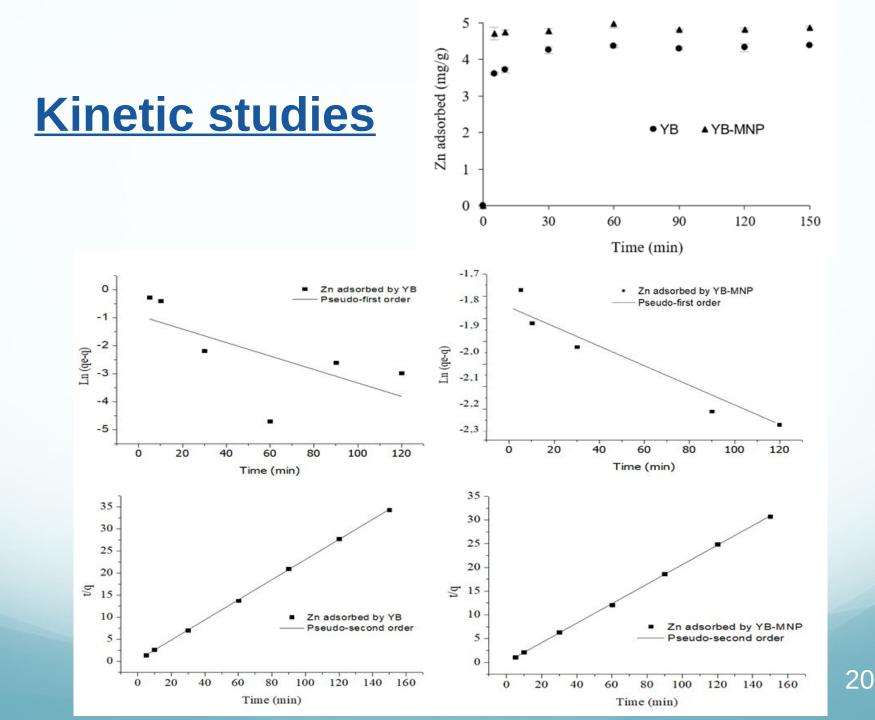
Stirring at 185 rpm for 24 h

Initial pH vs final pH


Point of zero charge (pH_{PZC})


Negative charges on the surface of the biosorbent (above pH_{PCZ})

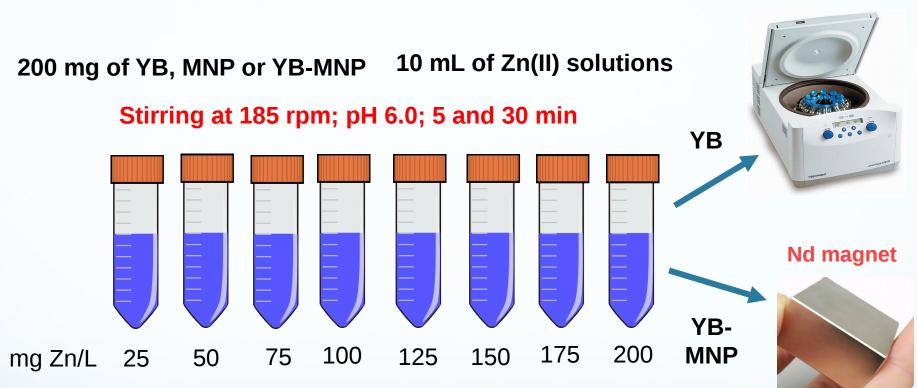

Favors the adsorption of Zn(II)


 \checkmark Best adsorption is expected at pH higher than pH_{PCZ}.

Kinect studies

	YB		YB-MNP	
Parameters	Pseudo 1st order	Pseudo 2 nd order	Pseudo 1 st order	Pseudo 2 nd order
Qe	0.3967	4.3917	0.1743	4.8641
χ^2	1.9650	0.0270	0.0225	0.0306
r^2	0.2969	0.9998	0.6526	0.9997
K1 or K2*	0.0240	0.1788	0.0175	1.2268

* K₁, pseudo-first order; K₂, pseudo-second order.

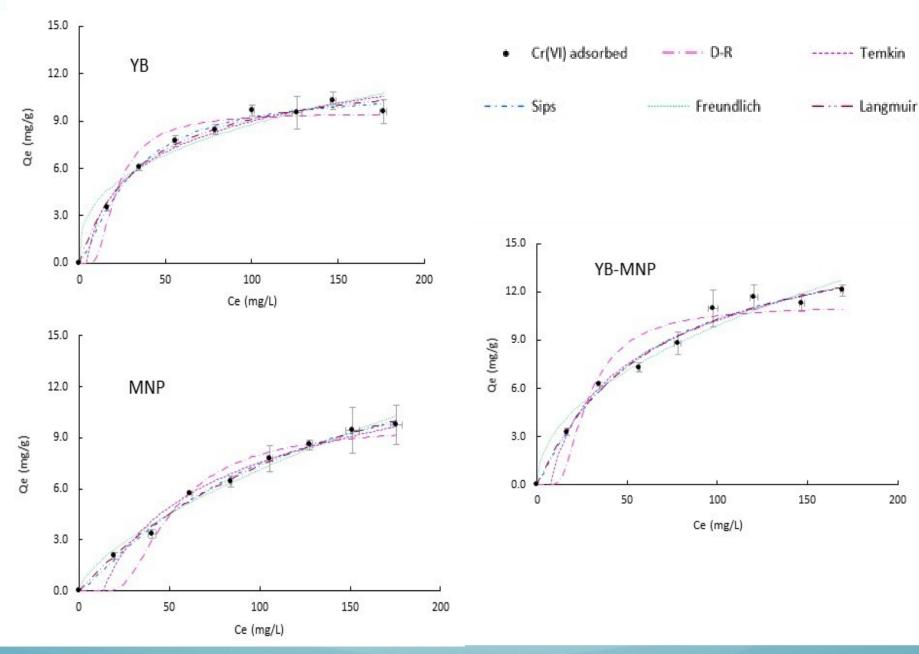

Q_{exp} YB = 4.26 YB-MNP = 4.70

Chemical nature!!!

Sorption capacity tests

centrifugation

22


Zn determination by FAAS

Non-linear isotherm models employed to fit Zn(II) adsorption by YB, MNP, and YB-MNP.

Model	Non-linear equation
Langmuir	$q_e = \frac{Q_{max}bC}{1+bC}$
Freundlich	$q_e = bC^n$
Temkin	$q_e = \frac{RT}{B} \ln \left(K_T C \right)$
Dubinin-Radushkevich (D-R)	$q_e = Q_{max} \exp\left(-B\mathcal{E}^2\right)$
SIPS	$q_e = \frac{Q_{max}(bC)^n}{1 + (bC)^n}$

Foo and Hammed, 2010; Saadi et al., 2015; Ayawei et al., 2017.

	YB	MNP	YB-MNP
SC _{exp} (mg/g)	10.31 ± 0.54 ^(SD)	9.76 ± 1.15 ^(SD)	12.08 ± 0.36 ^(SD)
Langmuir Isotherm Model			
Q _{max} (mg/g)	12.41 ± 0.52 (SE)	19.26 ± 1.74 (SE)	17.03 ± 1.24 (SE)
b (L/mg)	0.027 ± 3.9 × 10 ⁻³ (SE)	6.2 × 10 ⁻³ ± 9.6 × 10 ⁻⁴ (SE)	0.015 ± 2.7 × 10 ⁻⁴ (SE)
r ²	0.9874	0.99299	0.98339
χ ²	0.15119	0.08276	0.29107
Freundlich Isotherm Model			
K _f (L/mg)	1.71 ± 0.43 (SE)	0.35 ± 0.83 (SE)	1.09 ± 0.28 (SE)
nf	2.81 ± 0.43 (SE)	1.52 ± 0.12 (SE)	2.08 ± 0.24 (SE)
rź	0.95439	0.98428	0.96809
χ^2	0.54715	0.18555	0.55931
D-R Isotherm Model			
Q_{DR} (mg/g)	9.54 ± 0.34 (SE)	9.77 ± 0.62 (SE)	11.16 ± 0.66 (SE)
B_{DR} (mol ² /kJ)	5.88 × 10 ⁻⁵ ± 1.2 × 10 ⁻⁵ (SE)	3.26 × 10 ⁻⁴ ± 7.5 × 10 ⁻⁵ (SE)	9.89 × 10 ⁻⁵ ± 3.1 × 10 ⁻⁵ (SE)
E (kJ/mol)	92.21	39.16	71.10
r ²	0.95276	0.9294	0.90166
X ²	0.56672	0.83335	1.72355
Sips Isotherm Model			
Q _{max} (mg/g)	10.95 ± 0.61 (SE)	15.03 ± 2.66 (SE)	16.06 ± 3.22 (SE)
K, (L/mg)	0.034 ± 3.8 × 10 ^{-3 (SE)}	9.88 × 10 ⁻³ ± 3.16 × 10 ⁻³ (SE)	0.017±7.3×10-3 (SE)
n	1.36 ± 0.21 (SE)	1.20 ± 0.18 (SE)	1.08 ± 0.27 (SE)
r ²	0.99061	0.99321	0.98093
χ^2	0.11265	0.08012	0.33416
Temkin Isotherm Model			
b (J/mol)	33424 ± 2813 (SE)	24911 ± 1521(SE)	23858 ± 1647 (SE)
K (L/mg)	0.25 ± 0.062 (SE)	0.074 ± 8.6 × 10 ^{-3 (SE)}	0.14±0.022 (SE)
T(K)	298.15	298.15	298.15
r ²	0.9791	0.98316	0.98203
χ^2	0.25076	0.19874	0.31502
Di			

Conclusions

- With characterization, it was possible to infer that, in fact, the impregnation of the nanoparticles to the yeast biomass occurred;
- The model that best fit the experimental data was Sips, considering that chemical and physical phenomena contribute to the sorption process;
- The magnetite, besides facilitating the removal of the biosorbent from the medium, increases the sorption capacity;
- Thus, it is perceived that the synthesized material is environmentally advantageous and functions as a good biosorbent for removal of Zn(II) in aqueous medium.

UFET The biosorption group

ΕΥΧΑΡΙΣΤΩ

Thank you

Obrigada

7th International Conference on Sustainable Solid Waste Management

Technica

HERAKLION2019

ПЕРІФЕРЕІА КРНТН

www.heraklion2019.uest.gr